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Introduction

It is hard to operate and debug systems like OpenStack
that integrate many independently developed modules
with multiple levels of abstractions. A major challenge
is to navigate through the complex dependencies and re-
lationships of the states in different modules or subsys-
tems, to ensure the correctness and consistency of these
states.We present a system that captures the runtime
states and events from the entire OpenStack-Ceph stack,
and automatically organizes these data into a graph that
we call system operation state graph (SOSG). With SOSG
we can use intuitive graph traversal techniques to solve
problems like reasoning about the state of a virtual ma-
chine. Also, using a graph-based anomaly detection, we
can automatically discover hidden problems in OpenStack.
We have a scalable implementation of SOSG, and evalu-
ate the approach on a 125-node production OpenStack
cluster, finding a number of interesting problems.

SOSG Data Structure

Our core data structure is the state graph. Table 1 sum-
marizes the different data sources we use to generate the
state graph.
Table 1 : Data sources and their corresponding types
Type Data source
DB OpenStack databases updates (triggers)
Libvirt libvirt status Python API
Ovs OVS status ovsdb-client dump
Cephimage Ceph image list rbd info
Cephfile Ceph block file ls /ceph/dir/file
Cephlog log files from Ceph
Log logs from all OpenStack components

In a state graph, there are three categories of vertices:
entities, states and events (see Figure 1). Entity vertices
(i.e. 3, 6) are the central pieces in the state graph, while
the raw data only contain states (i.e. 4, 5) of an entity
at a specific time, or events (i.e. 1, 2) involving certain
entities.
There are two types of edges in the state graph: spatial
edges and temporal edges. Spatial edges capture the rela-
tionship between an entity and its states (entity-state, i.e.
c, d, e, f), as well as its associated events (entity-event,
i.e. a, b). Temporal edges represent the time order of
states (i.e. g) and events (i.e. h) that connected to the
same entity.

SOSG Construction

We construct the state graph from the raw data sources
in Table 1, without using any semantic information.
Step 1: Parse raw text data to generate event
and state vertices. We provide parsers to extract
the information from raw data into key-value pairs. Each
record from the data source is turned into a vertex (i.e.
1, 2, 4, 5), we add the key-value pairs as its properties.
Step 2: Discover and generate entity vertices.
We find the properties with many distinct values and each
value appears multiple times, and use the values as iden-
tifiers. We generate an entity vertex (i.e. 3, 6) for each
distinct identifier.
Step 3: Add spatial edges. We generate an edge
connecting a state or event vertex with an entity vertex, iff

the state or event literally contains the entity. In Figure 1,
we add edges a, b, c, d, e and f.
Step 4: Add temporal edges. We group the state
and event vertices by the associated entity, sort them by
time, and create temporal edges according to ascending
time order. This step adds the edges g and h in Figure 1.
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Figure 1 : A slice of an example state graph. The rectan-
gles, parallelograms, and hexagons represent entity, state
and event vertices, respectively.

SOSG Applications

System query as graph traversal
The state graph can answer system state queries from op-
erators with a single method - graph traversal, avoiding
the memorizing of many different commands.
Consider the query If physical server A encounters a
hard disk failure, which VMs are affected? In the tra-
ditional way, the operator needs to look up many infor-
mation, including which blocks are stored on the disk (ls
/var/lib/ceph/osd/...), which Ceph image the block be-
longs to (rbd info -p compute(or volumes) <image>,...),
where the image is used (nova show <server>, nova
volume-show <volume> or cinder show <volume>).
Each of the questions requires one or more system specific
commands.
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Figure 2 : An example path from host to VM across Ceph

Figure 2 shows one of the paths that our graph traversal
algorithm automatically discovers. The path starts from
a physical server and ends with a VM, across the Ceph
states. The query only takes 35 seconds which is fast.

Anomaly detection case study
Failed VM Migration. It is abnormal in that the mi-
grating VM is missing libvirt state, both from the source
host and the destination host. The user reports the is-
sue as a freezing migration process and has to delete the
VM. A closer manual inspection shows that an exception
happened during this migratiom, the storage (virtual disk)
of the VM migrated but the computation did not, result-
ing a failed migration. An even deeper inspection at the
events associated with this VM vertex indicates that the

VM encountered a migration problem: there are 653 re-
peated Instance not resizing, skipping migration
records out of all 1653 log lines related to the instance.
This repeated skipping of a small-instance migration also
suggests some bugs in OpenStack’s resource management
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Figure 3 : Migration failure: the expected Libvirt state is
missing in both source and destination nodes

Future Work

We will concentrate on the following future work:
Analyzing events and state history We would like
to have a model that maps events to the corresponding
anomalous state, which might help predict the failure be-
fore it actually happens.
Supporting incremental update of state graph. We
need to keep updating the state graph online in an incre-
mental way to caputure the continous evolving of states
and events.
Including other data sources. We want to incorporate
other static data sources (i.e. source code, bug reports
and documentations) into the graph, and hope to provide
more insights into how to fix the bugs discovered.
Applying SOSG to other systems. We would like to
apply it to detect problems in other distributed systems,
such as big data frameworks and general web services or-
ganized in a service oriented architecture (SOA).

Conclusion

As both researchers and system operation practitioners,
we keep wondering “What is the core set of knowledge in
system operation?" Most of the time, we believe that it is
the experience of knowing about all dependencies, or links
among different system components, and the knowledge
about different tools to inspect and change the states of
these components. Much of the knowledge is too trivial
to remember, impossible to transfer to a new system, and
hard to teach to another person. All of these problems
make system operation hard.
The above is our motivation to build SOSG which cap-
tures the runtime information, including both states and
events, and discovers the hidden links among these pieces
of information. By leveraging modern graph computation
capacity, we can process a vast amount of redundant data
and automatically construct the graph. With the graph,
we turn the typical task such as ad hoc probing of differ-
ent system components into an intuitive graph traversal
problem, making the exploration of heterogeneous sys-
tems easier. We also develop a subgraph-based anomaly
detection method to automatically analyze system states
to find hidden problems. We evaluate SOSG with data
from our production OpenStack cluster with dozens of
components, and demonstrate its effectiveness.

APSys 2016 Poster Session, Aug 4-5, 2016, HongKong, China


